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SUMMARY ) V ? 6 *  
The cooling requirements and in te rna l  t h r u s t  performance of an a i r -  

cooled, plug-type, var iable-area exhaust nozzle were experimentally i n -  
ves t iga ted  i n  a turbojet-engine afterburner over a range of exhaust-gas 
t o t a l  temperatures from 1990° t o  28400 F and a range of exhaust-nozzle 
pressure r a t i o s  from 1.5 t o  10.8. 

A t  t h e  highest  exhaust-gas t o t a l  temperature inves t iga ted  (2840' F ) ,  
a t o t a l  nozzle cooling airf low of 4.5 percent of t h e  a f te rburner  gas flow 
produced an average plug surface temperature of 1620° F.  T h e  4 . 5  percent 
value comprised about 1.2 percent f o r  plug cooling, 2.6 percent  f o r  plug 
suppor t - s t ru t  cooling, and 0.7 percent f o r  ou ter -she l l  cooling. 

The value of t h e  j e t - t h r u s t  coef f ic ien t  w a s  constant a t  about 0.97 
over a range of exhaust-nozzle pressure r a t i o s  from 1.5 t o  10.8 for t h e  
f u l l - s c a l e  plug nozzle with a smooth f a i r i n g  on t h e  t a i l cone .  This l e v e l  
of i n t e rna l  t h r u s t  performance w a s  good and agreed wel l  with p r i o r  NACA 
model-plug-nozzle da ta .  A loss i n  j e t - th rus t  coe f f i c i en t  up t o  2 percent  
w a s  caused by roughness (d iscont inui t ies  and buckles) on t h e  plug t a i l -  
cone sur face .  

INTRODUCTION 

The plug-type nozzle appears promising f o r  appl ica t ion  t o  current  
supersonic a i r c r a f t .  
have shown t h a t  i n t e rna l - th rus t  performance i s  good a t  both low and high 
nozzle pressure r a t i o s .  Thus, both subsonic and supersonic l e v e l s  of 
i n t e rna l - th rus t  coe f f i c i en t  a r e  high. 

Model s tud ie s  of plug-type nozzles (refs. 1 t o  5) 

Cooling problems arise from t h e  presence of t h e  plug i n  t h e  high- 
temperature exhaust gas.  Both t h e  amount of cooling required and any un- 
des i rab le  e f f e c t  of t h e  cooling system on t h e  in t e rna l - th rus t  performance 
of t h e  nozzle a r e  important considerations.  
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In order  t o  obtain information on plug-nozzle cooling problems and 
in te rna l - thrus t  performance, a fu l l - sca l e ,  air-cooled, var iab le-area  plug 
nozzle w a s  b u i l t  and run a t  t h e  NACA Lewis laboratory.  The conical  plug 
nozzle w a s  i n s t a l l e d  on a turbojet-engine af terburner .  Cooling requi re -  
ments of t he  nozzle at high exhaust-gas temperatures and pressures  were 
evaluated i n  a sea- level  exhaust f a c i l i t y  where cont ro l  of engine- inlet  
r a m  r a t i o  w a s  ava i lab le .  The in t e rna l - th rus t  performance of t h e  nozzle 
w a s  evaluated i n  an a l t i t u d e  exhaust f a c i l i t y  t h a t  provided a broad range 
of exhaust-nozzle pressure r a t i o s .  

A wide range of conditions was covered i n  these  tes ts .  The exhaust- 
gas t o t a l  temperature w a s  var ied from 1990° t o  2840' F.  
ing  airflow was var ied from 0.7 t o  4.5 percent of t h e  a f te rburner  gas 

. flow. The exhaust-nozzle pressure r a t i o  w a s  var ied from 1.5 t o  10.8. 

The t o t a l  cool- 

APPARATUS 

Exhaust Nozzle 

Description of conical  plug. - The complete, air-cooled, plug-type, 
variable-area exhaust nozzle i n s t a l l e d  i n  an a f te rburner  i s  shown i n  
f igu re  1. The nose of t h e  plug w a s  spher ica l  and f a i r e d  i n t o  a conical  
t a i l .  Three s t r u t s  supported t h e  plug and held t h e  cool ing-air  and in -  
strumentation ducts .  For experimental convenience, t h e  nozzle w a s  de- 
signed so t h a t  th roa t -a rea  va r i a t ion  could be ef fec ted  by axial t r a n s l a -  
t i o n  of t h e  plug. 

The plug envelope dimensions are spec i f ied  i n  f i g u r e  2 .  The m a x i -  
mum diameter of t h e  plug w a s  20 inches and i t s  over -a l l  length w a s  31.40 
inches. For one p a r t  of t h e  in t e rna l - th rus t  inves t iga t ion ,  a smooth 
f a i r i n g  was put  on t h e  plug ta i lcone ,  as shown i n  f i g u r e  3. 

Plug cooling systems. - The cooling systems chosen f o r  t h e  plug em- 
ployed both forced convection and f i l m  cooling. Details of t h e  cooling 
systems are shown i n  f igu res  1 and 4. Plug cooling a i r  flowed through 
t h e  t raverse  tubes,  t h e  s t r u t s ,  and t h e  tubes in s ide  t h e  plug and f i n a l l y  
discharged through nine annular s l o t s  o n ' t h e  plug surface.  
screen i n  t h e  s l o t s  served t o  meter t h e  flow of air  from t h e  s l o t s .  The 
double-walled nose cap w a s  cooled by forced convection. 
a typ ica l  s l o t  i n  t h e  t a i l cone  w a s  cooled by (1) t h e  i n t e r n a l  forced con- 
vection on t h e  under s ide  of t h e  surface by air  flowing through t h e  mani- 
f o l d  and s l o t ,  (2)  t h e  conduction t o  adjacent blowing s l o t  manifolds ac t -  
i ng  as heat s inks,  and (3) t h e  f i l m  of a i r  blowing from t h e  s l o t .  

Folded w i r e  

The region around 

St ru t  cooling system. - S t r u t  cooling a i r  f irst  flowed through t h e  
center passages of t h e  t r ave r se  tubes and t h e  s t r u t s  t o  the plug i n t e r i o r .  
It then passed out through t h e  annular passage beneath each s t r u t  outer  
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jacket  and i n t o  t h e  main 
ing of t h e  s t r u t  j acke ts  
and by conduction t o  t h e  

gas stream a t  t h e  outer  end of each s t r u t .  Cool- 
w a s  augmented by f i n s  on t h e  inner  jacke t  surface 
plug cooling-air supply ducts i n s ide  of each 

s t r u t .  The s t r u t  cooling air ,  while inside of t h e  plug, caused addi t iona l  
forced-convection cooling of t h e  inner  plug surfaces .  

Outer-shel l  cooling systems. - Two outer shells were employed (see 
f i g .  5) i n  t h i s  cooling system. One outer s h e l l  employed t h e  forced- 
convection film-cooling arrangement used f o r  t h e  plug. The o ther  w a s  
cooled by extending t h e  corrugated louvered l i n e r  of t h e  combustion cham- 
ber  t o  t h e  nozzle l i p .  

The forced-convection film-cooled outer  s h e l l  is  shown i n  d e t a i l  i n  
f igu re  6 (a ) .  
cen te r l ine  of t h e  engine, and t h e  l i p  diameter w a s  26.88 inches.  The 
s h e l l  sur face  w a s  cooled by a i r  flowing through t h e  manifolds and through 
t h e  screen i n  t h e  s l o t .  

The l i p  angle w a s  51.5' measured with reference t o  t h e  

The important f ea tu re s  of t h e  outer  s h e l l  cooled with a corrugated 
lauvered l i n e r  a r e  shown i n  f igu re  6(b) .  
s h e l l  w a s  39.63O, and t h e  l i p  diameter was 24.74 inches.  
conical  s h e l l  w a s  provided by extending the  combustion-chamber Liner t o  
t h e  nozzle l i p ,  thus u t i l i z i n g  the  r e l a t ive ly  cool  gas between t h e  l i n e r  
and t h e  w a l l .  

The l i p  angle of t h i s  ou ter  
Cooling f o r  t h e  

Engine and Afterburner 

A production tu rbo je t  engine was used as a gas generator f o r  t h i s  
inves t iga t ion .  The engine-inlet  a i r f low w a s  102 pounds pe r  second at 
t h e  r a t ed  speed of 7950 rpm. An af terburner  of NACA design w a s  f i t t e d  
t o  t h e  engine. 
Fuel-spray-bar d e t a i l s  are shown i n  f igure 8. Thirty-eight f u e l  spray 
bars  w e r e  arranged i n  two rows of 19 bars each with an axial spacing of 
3.08 inches between t h e  rows. 
of t h e  t r a i l i n g  edge of t h e  flameholder. A two-ring, annular, V-gutter 
flameholder w a s  used. Cooling of t h e  afterburner wall  w a s  provided by a 
corrugated louvered l i n e r  ( f ig .  9) extending from the  flameholder t o  t h e  
exhaust-nozzle i n l e t .  The l i n e r  inhibi ted screech and cooled t h e  after- 
burner w a l l .  

The p r inc ipa l  afterburner d e t a i l s  are shown i n  figure 7. 

The upstream row w a s  31.51 inches upstream 

F a c i l i t i e s  

The two phases of t h e  invest igat ion,  cooling and i n t e r n a l  t h r u s t ,  
were conducted i n  d i f f e r e n t  f a c i l i t i e s .  For  t h e  cooling phase of t h e  i n -  
ves t iga t ion ,  t h e  nozzle and engine were i n s t a l l e d  i n  a sea- leve l  exhaust 
f a c i l i t y .  The exhaust gases were discharged i n t o  an acous t i ca l  m u f f l e r  
a t  atmospheric pressure.  For t h e  in te rna l - thrus t  phase of t h e  inves t iga-  
t i o n ,  t h e  engine and nozzle were in s t a l l ed  i n  an a l t i t u d e  exhaust 
f ac i Lity . 
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Instrument at ion  

Engine. - The instrumentation used i n  t h e  engine and af te rburner  i s  
shown i n  f i g u r e  7 .  A t  t h e  engine i n l e t  ( s t a t i o n  I), a i r f low surveys of 
t o t a l  pressure,  s t a t i c  pressure,  and t o t a l  temperature were made. Sur- 
veys o f  t o t a l  pressure and t o t a l  temperature were made a t  t h e  tu rb ine  
discharge ( s t a t i o n  2 ) .  
j u s t  ahead of t h e  plug nozzle. 

A t o t a l -p re s su re  survey w a s  made at  s t a t i o n  3, 

Outer s h e l l s .  - The exhaust-nozzle instrumentation cons is ted  of t h e r -  
mocouples and pressure t aps  on t h e  outer  s h e l l ,  t h e  plug, and i n  t h e  
cooling-air  passages. On t h e  convection-cooled oute'r s h e l l ,  temperature 
measurements were made a t  severa l  loca t ions  on t h e  gas s i d e  of t h e  lnner  
surface ( f i g .  6 ( a ) ) .  Cooling airf low t o  t h i s  o u t e i  s h e l l  w a s  measured i n  
a separate supply pipe.  Measurements were a l so  made of t h e  pressure  i n -  
s ide  t h e  manifold supplying cooling a i r  t o  t h e  outer  s h e l l .  Instrumenta- 
t i o n  on the  l iner-cooled outer  s h e l l  consis ted of temperature measure- 
ments a t  severa l  loca t ions  on t h e  gas s i d e  of t h e  inner  surface,  as shown 
i n  f igure  6(b) .  

Plug. - Deta i l s  of t h e  plug instrumentation a r e  shown i n  f i g u r e s  1, 
10, and 11. 
on the plug surface.  
c i rcumferent ia l  pos i t ions  downstream of each cool ing-air  s l o t .  S t r u t  
jacket temperature w a s  measured with a s ing le  thermocouple on t h e  leading 
edge of each s t r u t .  
i ng  the slots and i n  t h e  plug i n t e r i o r .  The cooling a i r f low t o  each s l o t  
w a s  measured with an ind iv idua l  supply p ipe .  
with a thermocouple and s t a t i c -  and to ta l -pressure  t a p s .  

A complete longi tudina l  survey w a s  made of s t a t i c  pressure  
Plug surface temperatures were measured i n  t h r e e  

S t a t i c  pressure w a s  measured i n  each manifold supply- 

Each p ipe  w a s  instrumented 

Thermocouple construct ion.  - A l l  thermocouples used i n  the plug, t h e  

The chromel-alumel wires were surrounded 
s t r u t s ,  and t h e  outer  s h e l l  were of t h e  swaged type,  thus providing ease 
of i n s t a l l a t i o n  and d u r a b i l i t y .  
by magnesium-oxide in su la t ion  and were contained i n  a seamless Inconel 
tube.  The e n t i r e  assembly w a s  then drawn through a d i e ,  crushing t h e  
insu la t ion .  
vided a f i n  ac t ion  f o r  d i s s ipa t ion  of heat  t o  cold a i r  blowing over t h e  
thermocouple lead.  
of the sur face  temperature a t  t h e  thermocouple junct ion compared with t h e  
surface temperature i n  t h e  absence of t h e  thermocouple. A correc t ion  w a s  
applied t o  t h e  thermocouple reading t o  compensate f o r  t h i s  e f f e c t  (see 
appendix B) . 

Welding of t h e  swaged-type thermocouple t o  a metal sk in  pro- 

This e f f ec t  caused an appreciable l o c a l  depression 

Scale-force and fuel-flow measurements. - Scale f o r c e  w a s  measured 
w i t h  a self-balancing nul l - type pneumatic t h r u s t  c e l l .  
measured with ca l ibra ted  vane-type flowmeters. 
during the  cooling and t h r u s t  performance inves t iga t ions  were MIL-F-5624C, 
grade JP-5, and MTL-F-5624C, grade JT-4, respec t ive ly .  

Fuel  flow w a s  
The types of f u e l  used 
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PROCEDURE 

Coollag-Requirements Inves t iga t ion  

Inves t iga t ion  of t h e  cooling requirements of t h e  exhaust nozzle w a s  
conducted i n  a sea- leve l  exhaust f a c i l i t y .  A t  a constant l e v e l  of 
exhaust-gas t o t a l  temperature, t h e  plug, s t r u t ,  and ou te r - she l l  cool ing 
airf lows were var ied  over a range of values i n  order t o  produce safe 
s t r u t  and ou te r - she l l  temperatures and predetermined l e v e l s  of average 
plug sur face  temperature. This procedure w a s  repeated at seve ra l  d i f -  
f e ren t  exhaust -gas t o t a l  temperatures between 1990' and 2840° F . 
ing  a i r  w a s  independently supplied from laboratory compressors. 

Cool- 

I n t e r n a l  -Thr us  t Inves t iga t ion  

The inves t iga t ion  of t h e  in t e rna l - th rus t  performance of t h e  p lug  
nozzle w a s  conducted under nonafterburning condi t ions i n  an a l t i t u d e  ex- 
haust f a c i l i t y .  The primary va r i ab le s  were exhaust-nozzle opera t ing  
pressure  r a t i o ,  nozzle-area r a t i o ,  and geometry of t h e  ou te r  s h e l l .  
I n t e rna l - th rus t  performance of each configuration w a s  measured over a 
range of exhaust-nozzle pressure r a t i o s .  Exhaust-nozzle pressure  r a t i o  
w a s  ad jus ted  by changing t h e  exhaust-gas t o t a l  p ressure  and/or t h e  s i m -  
u la ted  a l t i t u d e  pressure  t o  which t h e  engine exhausted. Nozzle-area 
r a t i o  w a s  adjusted by longi tudina l  t r ans l a t ion  of t h e  plug p a r a l l e l  t o  
t h e  c e n t e r l i n e  of t h e  engine. The range of area r a t i o  ava i l ab le  w a s  from 
1.11 t o  1.85. Cooling a i r f low t o  t h e  s l o t s  and s t r u t s  w a s  var ied  from 
zero t o  maximum flow i n  var ious combinations t o  determine t h e  e f f e c t  of 
ind iv idua l  coolant flows on i n t e r n a l  t h r u s t .  

Computations 

Appendix A contains a l is t  of a l l  the symbols used i n  t h i s  r e p o r t .  
Appendix B spec i f i e s  t h e  methods used t o  compute cooling a i r f lows ,  exhaust- 
nozzle gas flow, j e t - t h r u s t  coef f ic ien t ,  exhaust-gas t o t a l  temperature, 
and swaged-thermocouple cor rec t ions .  

RESULTS AND DISCUSSION 

Cooling Performance 

The p lug  surface,  t h e  support s t r u t s ,  and t h e  outer  shells requi red  
separa te  cool ing systems. 
i n  th i s  cool ing inves t iga t ion ,  because it presented a g r e a t e r  sur face  
area t o  be cooled than  any o ther  component of t h e  complete nozzle.  
ou te r - she l l  configurat ions were used. One ou te r  s h e l l  w a s  cooled by 
forced convection. The other  w a s  cooled with a corrugated louvered l i n e r .  

The plug i t s e l f  w a s  t h e  major i t e m  of i n t e r e s t  

Two 
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Plug requirements. - A t y p i c a l  v a r i a t i o n  of average plug sur face  tem- 
perature  with plug cooling a i r f low fo r  an exhaust-gas t o t a l  temperature 
of 2550° F i s  shown i n  f i g u r e  1 2 .  A plug cooling a i r f low equal  t o  0.98 
percent of t h e  a f te rburner  gas flow produced an average plug sur face  tem- 
perature  of 1650' F .  
1.3 percent lowered t h e  average surface temperature from 1650° t o  1440' F.  

An increase i n  plug cooling a i r f low from 0.98 t o  

The plug surface temperatures shown i n  f i g u r e  1 2  a r e  averages of a l l  
t h e  individual  measurements on t h e  plug surface.. Average plug sur face  
temperature i s  t h e  average surface-area-weighted temperature over t h e  plug 
surface.  A t y p i c a l  v a r i a t i o n  of temperature along t h e  plug sur face  is  
shown i n  f i g u r e  13. I n  t h i s  f i g u r e  t h e  v e r t i c a l  broken l i n e s  denote s l o t  
exits.  Ind iv idua l  symbols are shown f o r  t h e  sur face  temperature a t  each 
circumferent ia l  loca t ion ,  and c i rcumferent ia l  averages are shown by s o l i d  
symbols. 

A reason f o r  t h e  s c a t t e r  of up t o  about 800° F i n  t h e  c i rcumferent ia l  
plug sur face  temperature measurements a t  any given longi tudina l  s t a t i o n  
i s  shown by t h e  l i g h t  and dark pa t t e rns  on t h e  plug sur face  i n  figure 14, 
where t h e  plug nozzle i s  shown during a t y p i c a l  a f te rburn ing  run. The 
exhaust-gas t o t a l  temperature and average plug sur face  temperature were 
2837O F and 1587' F, respec t ive ly .  P e c u l i a r i t i e s  of t h e  f u e l  i n j e c t i o n  
and combustion processes c rea ted  hot  s t r eaks  i n  t h e  combustion gases and, 
hence, on t h e  plug sur face .  
shown i n  f i g u r e  13, i s  a l s o  due i n  p a r t  t o  inherent  c i rcumferent ia l  and 
r a d i a l  nonuniformities i n  t h e  plug cooling a i r f low a t  each s l o t .  

The s c a t t e r  of plug sur face  temperature, 

A t y p i c a l  d i s t r i b u t i o n  of plug cool ing a i r f low (a l so ,  t h a t  which 
produced t h e  plug sur face  temperature d i s t r i b u t i o n  of f i g .  13) i s  shown 
i n  f igure  15. Both cumulative and ind iv idua l  plug s l o t  a i r f lows  are 
shown aga ins t  plug surface area. The cumulative d i s t r i b u t i o n  w a s  essen- 
t i a l l y  constant  f o r  a l l  t h e  cooling da ta  presented i n  t h i s  r epor t .  The 
v e r t i c a l  broken l i n e s  denote s l o t  e x i t s .  The s tagnat ion  po r t ion  of t h e  
plug (nose) required more cooling per  u n i t  surface area than  t h e  t a i l -  
cone ( t i p ) .  
curve) w a s  used ahead of t h e  plug major diameter. 

About 51 percent  of t h e  cooling a i r  (shown by t h e  cumulative 

The s i x t h  s l o t  provided a l a rge  share of t h e  t o t a l  cool ing a i r f low 
f o r  the p a r t i c u l a r  d a t a  of f i g u r e  15. 
t o  produce safe plug sur face  temperatures on t h a t  po r t ion  of the plug. 
It i s  fe l t  t h a t  t h e  hypothe t ica l  r e d i s t r i b u t i o n  of p lug  cool ing airf low,  
shown by t h e  dashed curve i n  f i g u r e  15, would represent  a more general  
p lug  cool ing-air  design requirement. The p lug  surface temperature d i s -  
t r i b u t i o n  accompanying t h i s  hypothe t ica l  change would probably be essen- 
t i a l l y  t h a t  shown i n  f i g u r e  13. 

This w a s  not  a necessary condition 

Tota l  (plug, s t r u t s ,  and .outer -she l l )  requirements. - A summary of 
the cool ing-air  requirements f o r  t h e  complete nozzle (as w e l l  as t h e  plug 
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cooling-air  requirements) i s  shown i n  f i g u r e  16 f o r  a range of exhaust- 
gas t o t a l  temperatures from 1990° t o  2840' F .  
4.5 percent of t h e  af terburner  gas flow a t  an exhaust-gas t o t a l  tempera- 
t u r e  of 2840° F r e su l t ed  i n  an average plug surface temperature of 1620° 
F. 
surface temperature l eve l s  of 1520' and 1420' F.  A t  an exhaust-gas t e m -  
pera ture  of 2480° F, t h e  l iner-cooled outer-shel l  l i p  temperature reached 
a l imi t ing  safe leve l ,  about 1940' F.  Therefore, t h i s  ou ter  s h e l l  w a s  
used only a t  exhaust-gas temperatures of l e s s  than 2480' F.  
convection film-cooled outer  s h e l l  w a s  used over t h e  complete range of 
exhaust-gas temperatures invest igated:  The d i scon t inu i t i e s  i n  t h e  curves 
showing t h e  t o t a l  requirements arise because t h e  convection-cooled outer  
s h e l l  required no cooling airf low a t  exhaust-gas t o t a l  temperatures below 
about 24800 F.  
t h e  main combustion chamber w a s  he lpfu l  i n  cool ing t h i s  ou te r  s h e l l .  

A t o t a l  cooling a i r f low of 

Additional curves show t h e  cooling-air  requirements a t  average plug 

The forced- 

The cooling air discharged from t h e  corrugated l i n e r  of 

A complete breakdown of t h e  t o t a l  cooling-air  requirements f o r  aver- 
age plug surface temperatures of 1620°, 1520°, and 1420' F i s  shown i n  
f igu res  17(a) ,  (b) ,  and f c ) ,  respect ively.  The average s t r u t  leading- 
edge temperatures were 1910°, 1799', and 1693' F, respec t ive ly .  The aver- 
age temperatures of t h e  convection-cooled ou te r - she l l  l i p  w e r e  1286O, 
126Z0, and 1209O F, respec t ive ly .  I n  f igure  l7 (a ) ,  t h e  t o t a l  nozzle cool- 
ing  airf low of 4.5 percent of t h e  afterburner gas flow at the exhaust gas 
t o t a l  temperature of 2840' F comprised about 1 .2  percent f o r  p lug  cooling, 
2.6 percent f o r  plug-support s t r u t  cooling, and 0.7 percent f o r  ou ter -  
s h e l l  cooling. From f igu re  17 it is  apparent t h a t  t h e  s t r u t s  required 
about twice as much cooling a i r  as the  plug. Calculations show that t h e  
s t r u t  cool ing-air  requirements could be reduced by redesign of t h e  s t r u t  
cooling passages t o  improve t h e i r  forced-convection cooling character-  
i s t i c s .  The s t r u t  cool ing-air  requirements could be reduced by at  least 
50 percent .  
t h e  t o t a l  cool ing-air  requirements would be reduced t o  about 3.2 percent  
of t h e  a f te rburner  gas flow i f  t h e  average plug surface temperature w e r e  
maintained at 1620' F . 

For example, at  an exhaust-gas t o t a l  temperature of 2840' F, 

I I n t e r n a l  Thrust 

Inves t iga t ion  of t h e  in t e rna l - th rus t  performance of t h e  plug nozzle 
included t h e  e f f e c t s  of exhaust-nozzle pressure r a t i o ,  plug t a i l c o n e  
roughness, and cooling airf low on jet-thrust  coe f f i c i en t .  

Ef fec t  of exhaust-nozzle pressure r a t i o .  - The value of j e t - t h r u s t  
coe f f i c i en t  was constant at  about 0.97 for  t h e  f u l l - s c a l e  plug nozzle 
(with smooth t a i l cone )  over a range of exhaust-nozzle pressure r a t i o s  
from about 1 .5  t o  10.8 and f o r  area r a t i o s  of 1.50 and 1.85, as shown i n  
f i g u r e  18. 
a shaded band and agrees w e l l  with t h e  fu l l - s ca l e  data .  Any evidence t h a t  

The da ta  f o r  a similar model plug nozzle (ref. 1) i s  shown as 
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t h e  f u l l - s c a l e  j e t - t h r u s t  coe f f i c i en t  reached a maximum value a t  i t s  de- 
s igg  pressure  r a t i o  w a s  masked by t h e  s c a t t e r  of t h e  d a t a  an? by t h e  s m a l l  
number of d a t a  poin ts  ava i l ab le .  The i n t e r n a l ,  off-design, t h r u s t  per-  
formance of t h e  nozzle would be compromised by je t  i n t e r a c t i o n  wZth an ex- 
t e rna l  s t rean  as shown i n  reference 7 .  However, t h e  plug nozzle s t i l l  ap- 
pears a t t r a c t i v e  f o r  appl ica t ions  requi r ing  good t h r u s t  over a broad range 
of pressure r a t i o s .  

Effect  of plug t a i l cone  roughness. - Figure 19 shows t h e  adverse ef - 
f e c t  of plug sur face  roughness on j e t - t h r u s t  coe f f i c i en t  f o r  area r a t i o s  
of 1.50 and 1.85. The l o s s  i n  j e t - t h r u s t  coe f f i c i en t  amounted t o  about 
2 percent a t  an a rea  r a t i o  of 1.85. Where less of t h e  t a i l c o n e  sur face  
area w a s  exposed t o  supersonic flow ( i . e . ,  area r a t i o  of 1 .50) ,  t h e  loss  
w a s  only about 1 percent .  An i l l u s t r a t i o n  of t h e  plug sur face  roughness 
i s  shown i n  f i g u r e  20. The dashed l i nes  ind ica t e  t h e  o r i g i n a l  p r o f i l e  
of the p lug  sur face  i n  seve ra l  c i rcumferent ia l  loca t ions .  The s o l i d  l i n e s ,  
obtained from c lay  impressions, show t h e  rough (buckled) sur face  condi- 
t i o n .  The buckles r e su l t ed  from rel ief  of thermal stresses i n  t h e  plug 
sk in .  

Ef fec t  of cooling a i r f low.  - There were no s i g n i f i c a n t  favorable  o r  
adverse e f f e c t s  o f  cooling a i r f low ( e i t h e r  from t h e  plug s l o t s  o r  t h e  
s t r u t s )  on j e t - t h r u s t  coe f f i c i en t .  The effect  of plug cool ing a i r f low 
i s  shown i n  f i g u r e  21, where t h e  j e t - t h r u s t  coe f f i c i en t  w a s  constant f o r  
r a t i o s  of plug cooling a i r f low t o  a f te rburner  gas flow up t o  about 0.028. 
Figure 22 shows t h e  e f f e c t  of s t r u t  cool ing airf low.  The j e t - t h r u s t  
coe f f i c i en t  w a s  again constant  f o r  r a t i o s  of s t r u t  cool ing a i r f low t o  
af terburner  gas-flow up t o  about 0.016. I n  addi t ion ,  f i g u r e  22 demon- 
s t ra tes  t h e  adverse e f f e c t  of plug sur face  roughness. 

SUMMARY OF RESULTS 

The cool ing requirements and i n t e r n a l  t h r u s t  performance of an a i r -  
cooled, plug-type, var iab le-area  exhaust nozzle were experimentally in -  
ves t iga ted  i n  a turbo je t -engine a f te rburner  over a range of exhaust-gas 
t o t a l  temperatures from 1990° t o  2840° F and a range of exhaust-nozzle 
pressure r a t i o s  from 1.5 t o  10.8. 

A t  a t y p i c a l  exhaust-gas t o t a l  temperature of 2550' F and a cooling- 
a i r  temperature of 78' F, a plug cool ing a i r f low of 0.98 percent  of t h e  
a f te rburner  gas flow produced an average plug sur face  temperature of 
about 1650' F .  
a f te rburner  gas flow reduced t h e  average plug sur face  temperature t o  
1440' F .  
(2840' F ) ,  a to ta l -nozz le  cool ing a i r f low of 4.5 percent  of t h e  after-  
burner gas flow produced an average p lug  surface temperature of 1620' F . 
The value of 4.5 percent comprised about 1 . 2  percent  f o r  plug cooling, 
2.6 percent  f o r  plug suppor t - s t ru t  cooling, and 0.7 pe rce r t  f o r  ou ter -  
shell cool ing.  

Increasing t h e  p lug  cool ing a i r f low t o  1.3 percent  of t h e  

A t  t h e  highest  exhaust-gas t o t a l  temperature inves t iga ted  
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The value of jet-thrust coefficient was constant at about 0.97 over 
a range of exhaust-nozzle pressure ratios from 1.5 to 10.8 f o r  the full- 
scale plug nozzle with a smooth fairing on the tailcone. 
internal-thrust performance agreed well with prior NACA model-plug-nozzle 
data. 
roughness (discontinuities and buckles) on the plug tailcone surf ace. 

This level of 

A loss in jet-thrust coefficient of up to 2 percent was caused by 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, January 8, 1957 
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SYMBOLS 

cross-sect ional  area,  sq ft 

coef f ic ien t  

t h r u s t ,  l b  

acce lera t ion  due t o  gravi ty ,  f t / sec  2 Q 

h heat- t ransfer  coe f f i c i en t  evaluated at f i l m  temperature, 
Btu/(hr) f s q  f t l  [OF)  

KO( 1, Kl( ) modified Bessel funct ions of second kind of order n 

k thermal conductivity,  Btu/(hr) f s q  f t )  (?E’/ft) 

L length of swaged thermocouple exposed t o  cooling airf low,  
f t  

perimeter, f t  

t o t a l  pressure,  lb/sq f t  abs 

s t a t i c  pressure,  lb/sq f t  abs 

gas constant,  f t - l b / ( l b )  (%) 

radius ,  f t  

T t o t a l  temperature, OF 

t 

W 

thickness,  f t  

weight-flow rate, lb/sec 

Y r a t i o  of spec i f i c  hea ts  
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Subscr ipts  : 

AB 

a 

an 

b 

e 

ex 

F 

f 

€3 

i 

2 

P 

sk 

st 

1 

2 

3 

4 

W 

Superscr ip t  : 

1 

af te rburner  

a i r  o r  a i r  side 

annulus i n  plane of outer -she l l  l i p  

compressor overboard bleed 

engine 

exhaust 

j e t  t h r u s t  

f u e l  

gas o r  gas s i d e  

indicated thermocouple junction 

jet  

thermocouple lead 

plug, upstream of plane of ou te r - she l l  l i p  

sk in  

s t r u t  

engine i n l e t  

tu rb ine  discharge 

af terburner ,  exhaust -nozzle i n l e t  

plane of ou te r - she l l  l i p  

i n f i n i t e l y  removed from heat s ink  (thermocouple lead)  

i d e a l  

11 
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APPENDIX B 

CALCULATIONS 

Cooling airf low.  - Cooling airf lows t o  each of t h e  plug s l o t s ,  t h e  
s t r u t s ,  and t h e  convection-cooled outer  s h e l l  were measured ind iv idua l ly  
by passing each flow through a separate  ca l ib ra t ed  pipe.  

Exhaust-nozzle gas flow. - G a s  flow through t h e  exhaust nozzle w a s  
def ineKas t h e  m a s s  flow passing through t h e  nozzle t h r o a t  ( a r b i t r a r i l y  
assumed as t h e  annular flow passage coplanar with t h e  l i p  of t h e  outer  
s h e l l ) .  That i s ,  

where 

wa, st s t r u t  cooling a i r f low (discharged d i r e c t l y  i n t o  a f te rburner  a t  
outer  ends .of s t r u t s )  

plug-slot  cooling a i r f low f o r  s l o t s  discharging i n t o  exhaust gas 
upstream of th roa t  Wa,P 

Je t  - th rus t  coe f f i c i en t  . - The j e t  - thrust '  coe f f i c i en t  w a s  defined as 
t h e  r a t i o  of a c t u a l  j e t  t h r u s t  t o  i d e a l  j e t  thrusit,  or  

F: F: 

I I 

Exhaust-gas t o t a l  temperature. - For nonafterburning condi t ions it 
w a s  assumed (and experimentally v e r i f i e d )  t h a t  t h e  average t o t a l  tempera- 
t u r e  a t  s t a t i o n  3 w a s  near ly  equal t o  t h e  average turbine-discharge t o t a l  
temperature. Thus, t h e  i d e a l  j e t  t h r u s t  and j e t - t h r u s t  coe f f i c i en t  could 
be computed f o r  nonafterburning condi t ions.  For af terburning ca lcu la t ions ,  
t h e  je t - thrus t  coe f f i c i en t  w a s  assumed equal t o  t h e  value from t h e  non- 
afterburning c a l i b r a t i o n  a t  t h e  same operat ing pressure r a t i o  and area  ra- 
t i o .  Then T4 w a s  computed using t h e  following d e f i n i t i o n  of j e t - t h r u s t  
coef f ic ien t  : 
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2 
- 460° 

Swaged-thermocouple cor rec t ions .  - For ease of f ab r i ca t ion ,  t h e  
swaged-type thermocouples were welded normal t o  a sur face .  
then  flowed over t h e  swaged tubing.  
i n  t h e  l o c a l  depression of thermocouple- junction temperatures of up t o  
severa l  hundred degrees, inasmuch as t h e  thermocouple junc t ion  w a s  i n  
t h e  center  of t h e  surface area being cooled by t h e  lead. A t h e o r e t i c a l  
ana lys i s  of t h i s  pin-f in- type cooling has been made i n  reference 7 ,  where 
it i s  shown t h a t  t h e  temperature depression due t o  t h e  presence of  t h e  
cooled thermocouple lead may be expressed as 

Cooling a i r  
This type of i n s t a l l a t i o n  r e s u l t e d  

where 

TOa 

Ti 

'a 

T4 

x 

I 
, m 
~ 

! U 

I P 

t r u e  sk in  temperature i n  absence of cooling e f f e c t  of thermocouple 
lead,  OF 

ind ica ted  sk in  temperature at thermocouple junct ion,  OF 

t o t a l  temperature of. a i r  cooling thermocouple lead,  O F  

exhaust-gas t o t a l  temperature near thermocouple junct ion,  OF 

hgAL = h$rL 2 



These equations were used t o  

NACA RM E57A07 

correct a l l  the  swaged-thermocouple readings 
subject t o  the  pin-f in-type cooling i n  t h i s  report .  

An al ternate  method of i n s t a l l i ng  the thermocouples t o  avoid t h i s  
local temperature depression of t he  junction would have been t o  imbed 
the  lead i n  the w a l l  with the  thermocouple junction far enough removed 
rad ia l ly  (about 0.5 in .  i n  t h i s  case) t o  be out of the  area of influence 
of t h e  p in  f i n  (i .e., essent ia l ly  at  However, t he  in s t a l l a t ion  of 
imbedded thermocouples i n  the plug surface would have been prohibit ively 
tedious because of the  limited working volume and the  inaccess ib i l i ty  of 
the  plug in t e r io r .  

x) . 
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Convection-cooled outer she l l  

Plug --\ 7 -+.- 

ng a i r  behind corrugated 
louvered l i n e r  

Figure 5. - Plug nozzle showing outer-shell cooling methods. 
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(a) Forced- convection f ilm-cooled ou te r  s h e l l .  

Swaged 
thermo- 
couple 

S t a t i c  
pressure  

Beaded 
thermo- 
couple 

Figure 6. - Plug-nozzle outer s h e l l s .  
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I 

orrugated liners 

Beaded thermocouple 

Section A-A 
(typical) 

) L i p  static pressure 
N 
Ip 

L c, 

(b) Outer shell cooled with corrugated louvered liner. 

Figure 6. - Concluded. Plug-nozzle outer shells. 
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Figure 9. - In te r ior  view of plug-nozzle afterburner showing antiscreech cooling l i ne r .  
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Figure 12 - Typical variation of average plug surface temper- 
Average exhaust gas total ature with plug cooling airflow. 

temperature, 2550' F, average cooling air temperature, 78' F. 
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Figure 14. - Plug nozzle during afterburning operation. Exhaust-gas temperature, 2837%’. 
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Exhaust-gas total temperature, O F  

Figure 16. - Complete nozzle cooling-air require- 
ments. Average afterburner total pressure, 4005 
pounds per square foot absolute; average exhaust 
gas flow, 101.56 pounds per second; average 
cooling- air temperature, 78' F . 
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